Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant J ; 106(5): 1468-1483, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33768632

RESUMEN

Suberin is a complex hydrophobic polymer of aliphatic and phenolic compounds which controls the movement of gases, water, and solutes and protects plants from environmental stresses and pathogenic infection. The synthesis and regulatory pathways of suberin remain unknown in Brachypodium distachyon. Here we describe the identification of a B. distachyon gene, BdFAR4, encoding a fatty acyl-coenzyme A reductase (FAR) by a reverse genetic approach, and investigate the molecular relevance of BdFAR4 in the root suberin synthesis of B. distachyon. BdFAR4 is specifically expressed throughout root development. Heterologous expression of BdFAR4 in yeast (Saccharomyces cerevisiae) afforded the production of C20:0 and C22:0 fatty alcohols. The loss-of-function knockout of BdFAR4 by CRISPR/Cas9-mediated gene editing significantly reduced the content of C20:0 and C22:0 fatty alcohols associated with root suberin. In contrast, overexpression of BdFAR4 in B. distachyon and tomato (Solanum lycopersicum) resulted in the accumulation of root suberin-associated C20:0 and C22:0 fatty alcohols, suggesting that BdFAR4 preferentially accepts C20:0 and C22:0 fatty acyl-CoAs as substrates. The BdFAR4 protein was localized to the endoplasmic reticulum in Arabidopsis thaliana protoplasts and Nicotiana benthamiana leaf epidermal cells. BdFAR4 transcript levels can be increased by abiotic stresses and abscisic acid treatment. Furthermore, yeast one-hybrid, dual-luciferase activity, and electrophoretic mobility shift assays indicated that the R2R3-MYB transcription factor BdMYB41 directly binds to the promoter of BdFAR4. Taken together, these results imply that BdFAR4 is essential for the production of root suberin-associated fatty alcohols, especially under stress conditions, and that its activity is transcriptionally regulated by the BdMYB41 transcription factor.


Asunto(s)
Aldehído Oxidorreductasas/metabolismo , Brachypodium/genética , Alcoholes Grasos/metabolismo , Regulación de la Expresión Génica de las Plantas , Lípidos/biosíntesis , Aldehído Oxidorreductasas/genética , Arabidopsis/enzimología , Arabidopsis/genética , Arabidopsis/fisiología , Brachypodium/enzimología , Brachypodium/fisiología , Edición Génica , Técnicas de Inactivación de Genes , Mutación con Pérdida de Función , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/enzimología , Raíces de Plantas/genética , Raíces de Plantas/fisiología , Poliésteres/metabolismo , Estrés Fisiológico , Nicotiana/enzimología , Nicotiana/genética , Nicotiana/fisiología
2.
Plant Physiol ; 186(1): 655-676, 2021 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-33576792

RESUMEN

Addressing the looming global food security crisis requires the development of high-yielding crops. In agricultural soils, deficiency in the micronutrient copper significantly decreases grain yield in wheat (Triticum aestivum), a globally important crop. In cereals, grain yield is determined by inflorescence architecture, flower fertility, grain size, and weight. Whether copper is involved in these processes, and how it is delivered to the reproductive organs is not well understood. We show that copper deficiency alters not only the grain set but also flower development in both wheat and its recognized model, Brachypodium distachyon. We then show that the Brachypodium yellow stripe-like 3 (YSL3) transporter localizes to the phloem, transports copper in frog (Xenopus laevis) oocytes, and facilitates copper delivery to reproductive organs and grains. Failure to deliver copper, but not iron, zinc, or manganese to these structures in the ysl3 CRISPR-Cas9 mutant results in delayed flowering, altered inflorescence architecture, reduced floret fertility, grain size, weight, and protein accumulation. These defects are rescued by copper supplementation and are complemented by YSL3 cDNA. This knowledge will help to devise sustainable approaches for improving grain yield in regions where soil quality is a major obstacle for crop production. Copper distribution by a phloem-localized transporter is essential for the transition to flowering, inflorescence architecture, floret fertility, size, weight, and protein accumulation in seeds.


Asunto(s)
Brachypodium/fisiología , Cobre/metabolismo , Proteínas de Transporte de Membrana/genética , Proteínas de Plantas/genética , Semillas/crecimiento & desarrollo , Brachypodium/genética , Proteínas de Transporte de Membrana/metabolismo , Proteínas de Plantas/metabolismo , Reproducción
3.
BMC Plant Biol ; 20(1): 335, 2020 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-32678030

RESUMEN

BACKGROUND: It is widely perceived that mechanical or thigmomorphogenic stimuli, such as rubbing and bending by passing animals, wind, raindrop, and flooding, broadly influence plant growth and developmental patterning. In particular, wind-driven mechanical stimulation is known to induce the incidence of radial expansion and shorter and stockier statue. Wind stimulation also affects the adaptive propagation of the root system in various plant species. However, it is unknown how plants sense and transmit the wind-derived mechanical signals to launch appropriate responses, leading to the wind-adaptive root growth. RESULTS: Here, we found that Brachypodium distachyon, a model grass widely used for studies on bioenergy crops and cereals, efficiently adapts to wind-mediated lodging stress by forming adventitious roots (ARs) from nonroot tissues. Experimental dissection of wind stimuli revealed that not bending of the mesocotyls but physical contact of the leaf nodes with soil particles triggers the transcriptional induction of a group of potential auxin-responsive genes encoding WUSCHEL RELATED HOMEOBOX and LATERAL ORGAN BOUNDARIES DOMAIN transcription factors, which are likely to be involved in the induction of AR formation. CONCLUSIONS: Our findings would contribute to further understanding molecular mechanisms governing the initiation and development of ARs, which will be applicable to crop agriculture in extreme wind climates.


Asunto(s)
Brachypodium/genética , Ácidos Indolacéticos/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Factores de Transcripción/metabolismo , Viento , Brachypodium/crecimiento & desarrollo , Brachypodium/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/fisiología , Factores de Transcripción/genética
4.
Plant Signal Behav ; 15(8): 1774715, 2020 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-32543955

RESUMEN

Histone deacetylases (HDACs) play an important role in plant stress response. In Brachypodium distachyon, which is model species for molecular biology research on monocot plants, the histone deacetylase BdHD1, homologous to AtHDAC1 of the RPD3/HDA1 class, functions as a positive regulator in the plant drought stress response. AtHDAC1 has been found to interact with transcription factors to regulate gene expression. However, the drought-responsive transcription factors that interact with BdHD1 have not been identified yet. Previously, we identified BdWRKY24 and BdMYB22 as drought responsive transcription factors in Brachypodium. In this study, we used yeast two-hybrid (Y2 H) and bimolecular fluorescence complementation (BiFC) assays to show that BdHD1 interacts with BdWRKY24 and BdMYB22. Our findings provides a base to investigate BdHD1-transcription factor complexes in the context of drought stress response in Brachypodium.


Asunto(s)
Brachypodium/enzimología , Brachypodium/metabolismo , Sequías , Histona Desacetilasas/metabolismo , Proteínas de Plantas/metabolismo , Factores de Transcripción/metabolismo , Brachypodium/fisiología , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Proteínas de Plantas/genética , Unión Proteica , Estrés Fisiológico/genética , Estrés Fisiológico/fisiología , Factores de Transcripción/genética
5.
Sci Rep ; 10(1): 4489, 2020 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-32161322

RESUMEN

Perennial grasses will account for approximately 16 billion gallons of renewable fuels by the year 2022, contributing significantly to carbon and nitrogen sequestration. However, perennial grasses productivity can be limited by severe freezing conditions in some geographical areas, although these risks could decrease with the advance of climate warming, the possibility of unpredictable early cold events cannot be discarded. We conducted a study on the model perennial grass Brachypodium sylvaticum to investigate the molecular mechanisms that contribute to cold and freezing adaption. The study was performed on two different B. sylvaticum accessions, Ain1 and Osl1, typical to warm and cold climates, respectively. Both accessions were grown under controlled conditions with subsequent cold acclimation followed by freezing stress. For each treatment a set of morphological parameters, transcription, metabolite, and lipid profiles were measured. State-of-the-art algorithms were employed to analyze cross-component relationships. Phenotypic analysis revealed higher adaption of Osl1 to freezing stress. Our analysis highlighted the differential regulation of the TCA cycle and the GABA shunt between Ain1 and Osl1. Osl1 adapted to freezing stress by repressing the GABA shunt activity, avoiding the detrimental reduction in fatty acid biosynthesis and the concomitant detrimental effects on membrane integrity.


Asunto(s)
Aclimatación , Brachypodium/fisiología , Frío , Congelación , Ácido gamma-Aminobutírico/metabolismo , Fenómenos Bioquímicos , Metabolismo Energético , Regulación de la Expresión Génica de las Plantas , Aprendizaje Automático , Redes y Vías Metabólicas , Fenotipo , Estrés Fisiológico
6.
Plant Cell Rep ; 39(5): 653-667, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32123996

RESUMEN

KEY MESSAGE: The TaMP gene from wheat encodes an α-mannosidase induced by salt stress that functions as negative regulator of salt tolerance in plants. Salt stress significantly affects growth and yield of crop plants. The α-mannosidases function in protein folding, trafficking, and endoplasmic reticulum-associated degradation in eukaryotic cells, and they are involved in abiotic stress tolerance in plants. Previously, we identified the α-mannosidase gene TaMP in wheat (Triticum aestivum). In this study, we investigated the function of TaMP in salt stress tolerance. TaMP expression was induced in wheat leaves by salt, drought, abscisic acid, and H2O2 treatments. Overexpressing TaMP in Brachypodium distachyon was associated with a salt-sensitive phenotype. Under salt stress, the overexpressing plants had reduced height, delayed growth status, low photosynthetic rate, decreased survival rate, and diminished yield. Moreover, the overexpression of TaMP aggravated the tendency for ions to become toxic under salt stress by significantly affecting the Na+ and K+ contents in cells. In addition, TaMP could negatively regulate salt tolerance by affecting the antioxidant enzyme system capacity and increasing the reactive oxygen species accumulation. Our study was helpful to understand the underlying physiological and molecular mechanisms of salt stress tolerance in plants.


Asunto(s)
Brachypodium/crecimiento & desarrollo , Hojas de la Planta/crecimiento & desarrollo , Tolerancia a la Sal/genética , Triticum/enzimología , alfa-Manosidasa/metabolismo , Ácido Abscísico/farmacología , Antioxidantes/metabolismo , Brachypodium/efectos de los fármacos , Brachypodium/genética , Brachypodium/fisiología , Núcleo Celular/genética , Núcleo Celular/metabolismo , Sequías , Retículo Endoplásmico/genética , Retículo Endoplásmico/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Peróxido de Hidrógeno/farmacología , Fotosíntesis/efectos de los fármacos , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/metabolismo , Hojas de la Planta/fisiología , Plantas Modificadas Genéticamente , Potasio/análisis , Potasio/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Sodio/análisis , Sodio/metabolismo , Sodio/farmacología , Triticum/genética , Regulación hacia Arriba , alfa-Manosidasa/genética
7.
Plant Cell Environ ; 43(5): 1314-1330, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31955437

RESUMEN

Mechanical stimulation, including exposure to wind, is a common environmental variable for plants. However, knowledge about the morphogenetic response of the grasses (Poaceae) to mechanical stimulation and impact on relevant agronomic traits is very limited. Two natural accessions of Brachypodium distachyon were exposed to wind and mechanical treatments. We surveyed a wide range of stem-related traits to determine the effect of the two treatments on plant growth, development, and stem biomass properties. Both treatments induced significant quantitative changes across multiple scales, from the whole plant down to cellular level. The two treatments resulted in shorter stems, reduced biomass, increased tissue rigidity, delayed flowering, and reduced seed yield in both accessions. Among changes in cell wall-related features, a substantial increase in lignin content and pectin methylesterase activity was most notable. Mechanical stimulation also reduced the enzymatic sugar release from the cell wall, thus increasing biomass recalcitrance. Notably, treatments had a distinct and opposite effect on vascular bundle area in the two accessions, suggesting genetic variation in modulating these responses to mechanical stimulation. Our findings highlight that exposure of grasses to mechanical stimulation is a relevant environmental factor affecting multiple traits important for their utilization in food, feed, and bioenergy applications.


Asunto(s)
Brachypodium/fisiología , Pared Celular/fisiología , Brachypodium/crecimiento & desarrollo , Ensayo de Inmunoadsorción Enzimática , Lignina/metabolismo , Fenómenos Mecánicos , Monosacáridos/metabolismo , Viento
8.
New Phytol ; 227(6): 1681-1695, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-31863702

RESUMEN

Pits are regions in the cell walls of plant tracheary elements that lack secondary walls. Each pit consists of a space within the secondary wall called a pit chamber, and a modified primary wall called the pit membrane. The pit membrane facilitates transport of solutions between vessel cells and restricts embolisms during drought. Here we analyzed the role of an angiosperm-specific TPX2-like microtubule protein MAP20 in pit formation using Brachypodium distachyon as a model system. Live cell imaging was used to analyze the interaction of MAP20 with microtubules and the impact of MAP20 on microtubule dynamics. MAP20-specific antibody was used to study expression and localization of MAP20 in different cell types during vascular bundle development. We used an artificial microRNAs (amiRNA) knockdown approach to determine the function of MAP20. MAP20 is expressed during the late stages of vascular bundle development and localizes around forming pits and under secondary cell wall thickenings in metaxylem cells. MAP20 suppresses microtubule depolymerization; however, unlike the animal TPX2 counterpart, MAP20 does not cooperate with the γ-tubulin ring complex in microtubule nucleation. Knockdown of MAP20 causes bigger pits, thinner pit membranes, perturbed vasculature development, lower reproductive potential and higher drought susceptibility. We conclude that MAP20 may contribute to drought adaptation by modulating pit size and pit membrane thickness in metaxylem.


Asunto(s)
Brachypodium , Proteínas de Microtúbulos , Proteínas de Plantas , Brachypodium/genética , Brachypodium/fisiología , Pared Celular , Sequías , Microtúbulos
9.
Plant Sci ; 289: 110278, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31623774

RESUMEN

The metabolic underpinnings of plant survival under severe drought-induced senescence conditions are poorly understood. In this study, we assessed the morphological, physiological and metabolic responses to sustained water deficit in Brachypodium distachyon, a model organism for research on temperate grasses. Relative to control plants, fresh biomass, leaf water potential, and chlorophyll levels decreased rapidly in plants grown under drought conditions, demonstrating an early onset of senescence. The leaf C/N ratio and protein content showed an increase in plants subjected to drought stress. The concentrations of several small molecule carbohydrates and amino acid-derived metabolites previously implicated in osmotic protection increased rapidly in plants experiencing water deficit. Malic acid, a low molecular weight organic acid with demonstrated roles in stomatal closure, also increased rapidly as a response to drought treatment. The concentrations of prenyl lipids, such as phytol and α-tocopherol, increased early during the drought treatment but then dropped dramatically. Surprisingly, continued changes in the quantities of metabolites were observed, even in samples harvested from visibly senesced plants. The data presented here provide insights into the processes underlying persistent metabolic activity during sustained water deficit and can aid in identifying mechanisms of drought tolerance in plants.


Asunto(s)
Brachypodium/fisiología , Sequías , Biomasa , Clorofila/metabolismo , Hojas de la Planta/metabolismo , Estrés Fisiológico , Agua/metabolismo
10.
Plant Physiol Biochem ; 143: 246-256, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31525602

RESUMEN

Brachypodium hybridum (Poaceae) is widely distributed in the dry environments in Mediterranean basin, due to its high tolerance to drought. Investigating the natural variation of B. hybridum in response to environmental stresses is crucial for unraveling the genetic network of its stress tolerance. 79 B. hybridum lines from eight Tunisian populations were screened for their performance to low P availability using morpho-physiological parameters. ANOVA showed that treatment and population*treatment factors were the most contributors in the explained variance for the majority of parameters. A considerable population differentiation was detected in control and under P level (Qst = 0.77 vs Qst = 0.62). This suggests that B. hybridum exhibit an adaptive differential response to P deficiency related environmental conditions. Results revealed that Raouad and Sejnen lines were the most tolerant to P deficiency followed by Haouaria and Enfidha lines. The remaining populations were classified as sensitive. This pattern suggests that coastal populations were more tolerant to P deficiency than the inland ones. A slightly higher heritability was evidenced under low P level for most of traits, indicating that the direct selection under P deficiency is more reliable than an indirect one under optimal P supply.


Asunto(s)
Brachypodium/genética , Variación Genética/genética , Fósforo/deficiencia , Brachypodium/fisiología , Redes Reguladoras de Genes/genética , Redes Reguladoras de Genes/fisiología , Fósforo/metabolismo
11.
Plant Cell Rep ; 38(9): 1109-1125, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31134348

RESUMEN

KEY MESSAGE: BdASR4 expression was up-regulated during abiotic stress and hormone treatments. Plants over-expressing BdASR4 improved drought tolerant. BdASR4 may regulate antioxidant activities and transcript levels of stress-related and abscisic acid-responsive genes. Abiotic stress conditions negatively affect plant growth and developmental processes, causing a reduction in crop productivity. The abscisic acid-, stress-, ripening-induced (ASR) proteins play important roles in the protection of plants from abiotic stress. Brachypodium distachyon L. is a well-studied monocot model plant. However, ASR proteins of Brachypodium have not been widely studied. In this study, five ASR genes of Brachypodium plant were cloned and characterized. The BdASR genes were expressed in response to various abiotic stresses and hormones. In particular, BdASR4 was shown to encode a protein containing a nuclear localization signal in its C-terminal region, which enabled protein localization in the nucleus. To further examine functions of BdASR4, transgenic Brachypodium plants harboring BdASR4 were generated. Over-expression of BdASR4 was associated with strong drought tolerance, and plants over-expressing BdASR4 preserved more water and displayed higher antioxidant enzyme activities than did the wild-type plants. The transcript levels of stress-responsive genes, reactive oxygen species scavenger-associated genes, and abscisic acid-responsive genes tended to be higher in transgenic plants than in WT plants. Moreover, plants over-expressing BdASR4 were hypersensitive to exogenous abscisic acid at the germination stage. Taken together, these findings suggest multiple roles for BdASR4 in the plant response to drought stress by regulating antioxidant enzymes and the transcription of stress- and abscisic acid-responsive genes.


Asunto(s)
Antioxidantes/metabolismo , Brachypodium/genética , Proteínas de Plantas/metabolismo , Agua/fisiología , Brachypodium/fisiología , Núcleo Celular/metabolismo , Sequías , Depuradores de Radicales Libres/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Especies Reactivas de Oxígeno/metabolismo , Estrés Fisiológico
12.
Plant Sci ; 283: 355-365, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31128706

RESUMEN

Despite recent evidence that HDACs are involved in the environmental stress responses of plants, their roles in the abiotic stress responses of monocot plants remain largely unexplored. We investigated a HDAC gene, Bradi3g08060 (BdHD1), in Brachypodium distachyon. The Brachypodium BdHD1-overexpression plants displayed a hypersensitive phenotype to ABA and exhibited better survival under drought conditions. On the other hand, the RNA-interference plants were insensitive to ABA and showed low survival under drought stress. At the genome-wide level, overexpression of BdHD1 led to lower H3K9 acetylation at the transcriptional start sites of 230 genes than in the wild type plants under the drought treatment. We validated our ChIP-Seq data on 10 selected transcription factor genes from the 230 drought-specific genes. These genes exhibited much lower expression in the BdHD1-overexpression plants compared to the wild type plants under drought stress. We further identified an ABA-inducible transcription factor gene BdWRKY24 that was repressed in BdHD1-OE plants, but highly expressed in RNA-interference plants under drought stress. These results indicate that BdHD1 plays a positive role in ABA sensitivity and drought stress tolerance and they provide a link between the role of BdHD1 and the drought stress response at a genome-wide level in Brachypodium.


Asunto(s)
Ácido Abscísico/fisiología , Brachypodium/metabolismo , Histona Desacetilasas/fisiología , Reguladores del Crecimiento de las Plantas/fisiología , Proteínas de Plantas/fisiología , Ácido Abscísico/metabolismo , Arabidopsis/enzimología , Arabidopsis/genética , Brachypodium/enzimología , Brachypodium/genética , Brachypodium/fisiología , Deshidratación , Regulación de la Expresión Génica de las Plantas , Técnicas de Silenciamiento del Gen , Histona Desacetilasas/metabolismo , Filogenia , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Dedos de Zinc/genética , Dedos de Zinc/fisiología
13.
Sci Rep ; 9(1): 3824, 2019 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-30846873

RESUMEN

The Nitrogen Use Efficiency (NUE) of grain cereals depends on nitrate (NO3-) uptake from the soil, translocation to the aerial parts, nitrogen (N) assimilation and remobilization to the grains. Brachypodium distachyon has been proposed as a model species to identify the molecular players and mechanisms that affects these processes, for the improvement of temperate C3 cereals. We report on the developmental, physiological and grain-characteristic responses of the Bd21-3 accession of Brachypodium to variations in NO3- availability. As previously described in wheat and barley, we show that vegetative growth, shoot/root ratio, tiller formation, spike development, tissue NO3- and N contents, grain number per plant, grain yield and grain N content are sensitive to pre- and/or post-anthesis NO3- supply. We subsequently described constitutive and NO3--inducible components of both High and Low Affinity Transport Systems (HATS and LATS) for root NO3- uptake, and BdNRT2/3 candidate genes potentially involved in the HATS. Taken together, our data validate Brachypodium Bd21-3 as a model to decipher cereal N nutrition. Apparent specificities such as high grain N content, strong post-anthesis NO3- uptake and efficient constitutive HATS, further identify Brachypodium as a direct source of knowledge for crop improvement.


Asunto(s)
Brachypodium/fisiología , Nitrógeno/análisis , Suelo/química , Brachypodium/genética , Brachypodium/crecimiento & desarrollo , Proteínas de Plantas/genética
14.
Nat Commun ; 10(1): 812, 2019 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-30778068

RESUMEN

Timing of reproductive transition is precisely modulated by environmental cues in flowering plants. Facultative long-day plants, including Arabidopsis and temperate grasses, trigger rapid flowering in long-day conditions (LDs) and delay flowering under short-day conditions (SDs). Here, we characterize a SD-induced FLOWERING LOCUS T ortholog, FT-like 9 (FTL9), that promotes flowering in SDs but inhibits flowering in LDs in Brachypodium distachyon. Mechanistically, like photoperiod-inductive FT1, FTL9 can interact with FD1 to form a flowering activation complex (FAC), but the floral initiation efficiency of FTL9-FAC is much lower than that of FT1-FAC, thereby resulting in a positive role for FTL9 in promoting floral transition when FT1 is not expressed, but a dominant-negative role when FT1 accumulates significantly. We also find that CONSTANS 1 (CO1) can suppress FTL9 in addition to stimulate FT1 to enhance accelerated flowering under LDs. Our findings on the antagonistic functions of FTL9 under different day-length environments will contribute to understanding the multifaceted roles of FT in fine-tune modulation of photoperiodic flowering in plants.


Asunto(s)
Brachypodium/fisiología , Flores/fisiología , Fotoperiodo , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente
15.
Elife ; 82019 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-30618375

RESUMEN

Perception of seasonal cues is critical for reproductive success in many plants. Exposure to winter cold is a cue that can confer competence to flower in the spring via a process known as vernalization. In certain grasses, exposure to short days is another winter cue that can lead to a vernalized state. In Brachypodium distachyon, we find that natural variation for the ability of short days to confer competence to flower is due to allelic variation of the FLOWERING LOCUS T (FT1) paralog FT-like9 (FTL9). An active FTL9 allele is required for the acquisition of floral competence, demonstrating a novel role for a member of the FT family of genes. Loss of the short-day vernalization response appears to have arisen once in B. distachyon and spread through diverse lineages indicating that this loss has adaptive value, perhaps by delaying spring flowering until the danger of cold damage to flowers has subsided.


Asunto(s)
Brachypodium/metabolismo , Brachypodium/fisiología , Florigena/metabolismo , Flores/fisiología , Fotoperiodo , Homología de Secuencia de Aminoácido , Brachypodium/genética , Mapeo Cromosómico , Ritmo Circadiano/genética , Frío , Regulación de la Expresión Génica de las Plantas , Genes de Plantas
16.
New Phytol ; 222(2): 1149-1160, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30585637

RESUMEN

There is a dynamic reciprocity between plants and their environment: soil physiochemical properties influence plant morphology and metabolism, and root morphology and exudates shape the environment surrounding roots. Here, we investigate the reproducibility of plant trait changes in response to three growth environments. We utilized fabricated ecosystem (EcoFAB) devices to grow the model grass Brachypodium distachyon in three distinct media across four laboratories: phosphate-sufficient and -deficient mineral media allowed assessment of the effects of phosphate starvation, and a complex, sterile soil extract represented a more natural environment with yet uncharacterized effects on plant growth and metabolism. Tissue weight and phosphate content, total root length, and root tissue and exudate metabolic profiles were consistent across laboratories and distinct between experimental treatments. Plants grown in soil extract were morphologically and metabolically distinct, with root hairs four times longer than with other growth conditions. Further, plants depleted half of the metabolites investigated from the soil extract. To interact with their environment, plants not only adapt morphology and release complex metabolite mixtures, but also selectively deplete a range of soil-derived metabolites. The EcoFABs utilized here generated high interlaboratory reproducibility, demonstrating their value in standardized investigations of plant traits.


Asunto(s)
Brachypodium/fisiología , Ecosistema , Metaboloma , Modelos Biológicos , Suelo/química , Raíces de Plantas/anatomía & histología , Raíces de Plantas/metabolismo , Reproducibilidad de los Resultados
17.
Nat Plants ; 4(12): 997-1009, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30478363

RESUMEN

Vernalisation is the programmed physiological process in which prolonged cold-exposure provides competency to flower in plants; widely found in winter and biennial species, such as Arabidopsis, fruit trees, vegetables and wheat. This phenomenon is regulated by diverse genetic networks, and memory of vernalisation in a life cycle mainly depends on epigenetic mechanisms. However, less is known about how to count winter-dosage for flowering in plants. Here, we compare the vernalisation genetic framework between the dicots Arabidopsis, temperate grasses, wheat, barley and Brachypodium. We discuss vernalisation mechanisms involving crosstalk between phosphorylation and O-GlcNAcylation modification of key proteins, and epigenetic modifications of the key gene VRN1 in wheat. We also highlight the potential evolutionary origins of vernalisation in various species. Current progress toward understanding the regulation of vernalisation requirements provides insight that will inform the design of molecular breeding strategies for winter crops.


Asunto(s)
Arabidopsis/genética , Brachypodium/genética , Regulación de la Expresión Génica de las Plantas , Redes Reguladoras de Genes , Hordeum/genética , Triticum/genética , Aclimatación , Arabidopsis/fisiología , Brachypodium/fisiología , Frío , Epigénesis Genética , Evolución Molecular , Flores/genética , Flores/fisiología , Hordeum/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estaciones del Año , Triticum/fisiología
18.
J Evol Biol ; 31(11): 1689-1703, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30120791

RESUMEN

The potential for rapid evolution in invasive species makes them useful for studying adaptive responses of populations to novel environments. However, phenotypic divergence during invasion is not necessarily due to selection, but may be a product of neutral processes resulting from population bottlenecks during colonization and range expansion. We investigated phenotypic adaptation during the establishment and range expansion of the invasive bunchgrass, slender false brome (Brachypodium sylvaticum; Poaceae). Utilizing a novel approach, we made robust comparisons of functional traits using genetic similarity based on unique alleles to determine the genetic probability of contribution from native source regions and integrated these probabilities into our QST -FST comparisons for 12 physiological and anatomical traits associated with drought stress in the introduced range. Our results indicate phenotypic divergence greater than neutral expectations in five traits between native and invasive populations, indicating selective divergence occurred during invasive species establishment. The results indicate that the majority of divergence in B. sylvaticum occurred after introduction to the novel environment, but prior to invasive range expansion. This study provides evidence for adaptive genetic differentiation during the establishment of an invasive species, while also describing a robust method for the detection of selective processes after species introduction to a novel environment.


Asunto(s)
Adaptación Fisiológica , Evolución Biológica , Brachypodium/fisiología , Especies Introducidas , Brachypodium/genética , Demografía
19.
Proc Biol Sci ; 285(1882)2018 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-30051826

RESUMEN

Cities and adjacent regions represent foci of intense human activity and provide unique opportunities for studying human-mediated dispersal and gene flow. We examined the effect of landscape features on gene flow in the invasive grass Brachypodium sylvaticum across an urban-rural interface at the edge of its expanding range. We used genome-wide single-nucleotide polymorphism surveys of individuals from 22 locations. Resistance surfaces were created for each landscape feature, using ResistanceGA to optimize resistance parameters. Our Structure analysis identified three distinct clusters, and diversity analyses support the existence of at least three local introductions. Multiple regression on distance matrices showed no evidence that development, roads, canopy cover or agriculture had a significant influence on genetic distance in B. sylvaticum Geographical distance was a mediocre predictor of genetic distance and reflected geographical clustering. The model of rivers acting as a conduit explained a large portion of variation in genetic distance, but the lack of evidence of directional gene flow eliminated hydrochory as a dispersal mechanism. These results and observations of the distribution of populations in disturbed sites indicate that the influence of rivers on patterns of dispersal of B. sylvaticum probably reflects seed dispersal due to human recreational activity.


Asunto(s)
Brachypodium/genética , Flujo Génico , Polimorfismo de Nucleótido Simple , Brachypodium/fisiología , Variación Genética , Humanos , Especies Introducidas , Dinámica Poblacional , Análisis de Regresión , Dispersión de Semillas
20.
Plant J ; 96(2): 438-451, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30044522

RESUMEN

Grasses are essential plants for ecosystem functioning. Quantifying the selective pressures that act on natural variation in grass species is therefore essential regarding biodiversity maintenance. In this study, we investigate the selection pressures that act on two distinct populations of the grass model Brachypodium distachyon without prior knowledge about the traits under selection. We took advantage of whole-genome sequencing data produced for 44 natural accessions of B. distachyon and used complementary genome-wide selection scans (GWSS) methods to detect genomic regions under balancing and positive selection. We show that selection is shaping genetic diversity at multiple temporal and spatial scales in this species, and affects different genomic regions across the two populations. Gene ontology annotation of candidate genes reveals that pathogens may constitute important factors of positive and balancing selection in B. distachyon. We eventually cross-validated our results with quantitative trait locus data available for leaf-rust resistance in this species and demonstrate that, when paired with classical trait mapping, GWSS can help pinpointing candidate genes for further molecular validation. Thanks to a near base-perfect reference genome and the large collection of freely available natural accessions collected across its natural range, B. distachyon appears as a prime system for studies in ecology, population genomics and evolutionary biology.


Asunto(s)
Brachypodium/genética , Variación Genética , Genoma de Planta/genética , Genómica , Sitios de Carácter Cuantitativo/genética , Adaptación Fisiológica , Brachypodium/fisiología , Ecosistema , Interacciones Huésped-Patógeno , Aprendizaje Automático , Modelos Biológicos , Fenotipo , Selección Genética , Estrés Fisiológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...